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 ABSTRACT

This paper describes the experiments performed as part of the
TREC-97 Spoken Document Retrieval Track. The task was to
pick the correct document from 35 hours of recognized speech
documents, based on a text query describing exactly one
document. Among the experiments we described here are:
Vocabulary size experiments to assess the effect of words
missing from the speech recognition vocabulary; experiments
with speech recognition using a stemmed language model; using
confidence annotations that estimate of the correctness of each
recognized word; using multiple hypotheses from the recognizer.
And finally we also measured the effects of corpus size on the
SDR task. Despite fairly high word error rates, information
retrieval performance was only slightly degraded for speech
recognizer transcribed documents.

1. INTRODUCTION

For the first time, the 1997 Text REtrieval Conference (TREC-
97) included an evaluation track for information retrieval on
spoken documents. In this paper, we describe some experiments
for the spoken document retrieval, with details of both the speech
recognition system and the information retrieval engine.

The SDR Data

The speech data were identical to the training data used in the
1997 ARPA Speech Recognition Workshop HUB-4 broadcast
news evaluations [11]. The main difference lay in the split
between training and testing data; here roughly half of the
material was reserved for the test data and only half the total
acoustic data was used for training the acoustic models. There
were three “versions” of the data available from NIST: A
manually generated transcript (which also contained some errors),
a speech recognition transcript provided by IBM, and the raw
audio data, to be transcribed by our own recognizer. There were
about 1200 news stories in the training data set and 1451 in the
test set.

Information Retrieval Scoring Metrics

The IR task consisted of a list of queries, for each of which one or
more relevant documents were to be returned by the IR system.
The test queries were designed to simulate a known-item retrieval
task. For each query, only one document was considered relevant
for the purposes of this evaluation. While other documents may
have had some relevance to the query, only the document it was
designed to retrieve was scored as a correct retrieval. To measure
the effectiveness of the IR system, we report the inverse average
inverse rank (IAIR):
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Where irank  is the rank of document I. N is the

number of queries.

One characteristic of the IAIR is that it rewards correct
documents near the top more than documents in the middle or
towards the end of the rankings. Both average rank and IAIR
score 1.0 for a perfect retrieval and larger numbers for less than
perfect retrievals. However, using the average rank metric, the
difference between returning a document at rank 100 versus rank
200 is large, where this difference is almost negligible for the
IAIR metric. At the other end of the scale, the difference between
returning a document at rank 2 versus rank 10 is small for the
average rank, but large for IAIR. In real life situations, where
users’ time is valuable, closeness to the top is more critical than
the average rank over all items returned.

The Speech Recognition Component

The Sphinx-III speech recognition system was used for the CMU
TREC SDR evaluation, and it was configured similarly to the that
used in the 1996 DARPA CSR evaluation [9], although several
changes have been made to the recognizer since then. Sphinx-III
is a large vocabulary, speaker independent, fully continuous



hidden Markov model speech recognizer with separately trained
acoustic, language and lexical models.

For the current evaluation a gender-independent HMM with
6,000 senonically-tied states and 16 diagonal-covariance
Gaussian mixtures was trained on a union of the CSR Wall Street
Journal corpus and the 1996 TREC-6 training set.

The decoder used a Katz-smoothed trigram language model [12]
trained on the 1992-1996 Broadcast News Language Modeling
(BN LM) corpus [11]. This is a fairly standard language model,
much like those that have been used by the DARPA speech
recognition community for the past several years. As a space
optimization, singleton trigrams and bigrams were excluded. As a
new feature, this language model incorporated cross-sentence-
boundary trigrams to better model utterances containing more
than one sentence.

The lexicon was chosen from the most common words in the
corpus, at a size that balanced the trade-off between leaving
words out-of-vocabulary and introducing acoustically confusable
words [8]. For this evaluation, the vocabulary was comprised of
the most frequent 51,000 words in the BN LM corpus,
supplemented by some 200 multi-word phrases and some 150
acronyms. The vocabulary size was initially based on our
experience with broadcast news, and a subsequent careful
analysis of the trade-off showed that this choice was a good one.
More details of the trade-off involved in vocabulary selection are
provided below.

Compared with the earlier Sphinx-II speech recognition system,
Sphinx-III boasts a higher accuracy but at significant
computational cost. To achieve a lower word error rate of 27.4%
versus 45.9% for Sphinx-II on a subset of the training data, the
original Sphinx-III system processing time increased to 120 times
real time on a 266 MHz DEC Alpha compared with only 1.4
times real time for Sphinx-II. By reducing the beam width of the
search and by optimizing the space required, the Sphinx-III
processing time was reduced to about 30 times real time, with
only a slight loss in word transcription accuracy. The 75%
speedup resulted in about a 10% increase in relative word error
rate. Decoding the audio files in the test data required about 1000
hours of CPU time.

The Information Retrieval Component

Both documents and queries were processed using the same
conditioning tools, namely noise filtering, stopword removal, and
term stemming:

• Noise Filtering: The goal of noise filtering was simply to
remove non-alphabetic ASCII characters, punctuation, and
case distinctions.

• Stopword removal: A set of 811 stopwords from a
combination of the SMART [13] IR engine and other
available stopword lists were removed entirely.

• Term mappings: A set of 4578 mappings was used to map
words with irregular word endings that were not properly
covered by an implementation of the Porter [6] algorithm.
An on-line Houghton-Mifflin dictionary was used for this

lookup of irregular words and their roots.
An example of this mapping is APPENDICES→APPENDIX

• Term stemming: An implementation of the Porter algorithm
was applied to map words to their common root.

A heavily stripped down core of the CMU Informedia SEIDX
engine [10] was used to compare queries with documents. A
relevance score was created for each pair according to the
following equation:
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3. OFFICIAL TREC-6 SDR RESULTS

Table 1 shows the official CMU TREC SDR results. Since the
transcriptions were subject to filtering by stopword removal and
stemming as discussed above, the word error rates were reported
for both the unfiltered and filtered references and hypotheses. An
analysis of the results showed several preprocessing errors and
confirmed an insight into the relationship between word error rate
and information retrieval.
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Table 1: Performance of the CMU TREC-6 SDR Evaluation
System according to the NIST scoring system on 49 queries.
The filtered word error rate (WER) reflects the effect of
stopword removal and stemming.

Vocabulary Coverage

The words that were in the queries but were missing from the
speech recognizer’s 51,000 word vocabulary were “CIA”,
“TORCHED?”, “SMOKING?”, “WELL-KNOWN”, and
“GOLDFINGER”.  These problems are primarily due to
inconsistencies in the preprocessing phases. While “C.I.A.”
was in the vocabulary, “CIA” was not, resulting in a completely
missed word during information retrieval. Similarly, an oversight
in the preprocessing phase allowed the question mark to become
part of the word in “torched?”  and “smoking?” . For
“well-known”, each of the component words “well” and
“known” were in the vocabulary, but the compound “well-
known” was not there as a single token, and thus was treated as
an irretrievable word. The only true missing word in our 51,000-
word vocabulary was “Goldfinger” . Thus the 51,000 word
vocabulary selection provided excellent coverage for this test
evaluation.



Recognition Accuracy versus Information
Retrieval Quality

The official TREC results confirmed that vastly reduced word
error rates translate into slight improvements in information
retrieval. Comparing the performance on the baseline IBM
speech recognition data with that on the CMU speech recognition
output, on the filtered texts, we found that nearly doubling the
filtered word error rate led to only a 14% decrease in information
retrieval effectiveness as measured by IAIR.

4. EXPERIMENTS

Some of the experiments described here were performed before
the actual test data with queries was available from NIST. In
order to allow meaningful experiments to be performed on the
TREC-6 training data, 1167 documents were selected from the set
and known-item retrieval style queries were generated for 374 of
them by hand. In some of the very early experiments, a much
smaller test set composed of only 103 broadcast news stories with
associated known-item queries from a privately collected corpus
was added to the 1167 documents to permit initial investigation
of ideas involving the speech recognition configuration. We shall
refer to this latter test set as the “small test set.”

Vocabulary Size Experiments

Prior to the evaluation we attempted to find a good vocabulary
size that was optimized for both speech recognition and
information retrieval. We chose three different vocabulary sizes,
40,000, 51,000 and 64,000 words, constructed a language model
for each one, and then performed speech recognition. Table 2
shows that as the vocabulary got larger, the rate of out-of-
vocabulary words decreased, but beyond 51,000 words speech
recognition accuracy did not improve. Additional vocabulary
coverage was thus obtained only at the cost of adding many
acoustically confusable words, and information retrieval
effectiveness decreased slightly. We chose to use the 51,000-
word vocabulary for our official TREC submission. As explained
in the analysis of vocabulary coverage above, this vocabulary size
left in only unrecognizable word amongst the terms used in the
49 test queries. This experiment was performed prior to the
official TREC submission on the 103 queries that constituted our
in-house development test set.
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Table 2: Effect of Vocabulary Size on System Performance.
This experiment was performed on the “small” test set of 103
queries.

Stemmed Language Models

Using a small test set described above and the 51,000-word
vocabulary, we also investigated the concept of language
modeling tailored specifically to information retrieval. Since the

words in the recognition output are stemmed before being used
for IR, distinctions between different forms of a stem are
irrelevant to the IR system. In an attempt to take advantage of this
observation, a language model was built from a stemmed version
of the LM training data. Each root word in the language model
had multiple “pronunciations” in the lexicon to reflect the
original, unstemmed, forms.

For example, suppose the root forms of the words
“recognize”, “recognized”, and “recognition” all
map into the common root “recogni”+suffix, where the suffix
in this case is either “ze”, “zed”, or “tion”. The stemmed
language model would provide only one transition from the root
“recogni” into words that can follow, in effect collapsing
multiple paths between individual words into one path between
root words. The lexicon would reflect the alternate inflected
forms as alternate pronunciations of the root word, i.e.

Recogni R EH K AX G N AY Z

Recogni(2) R EH K AX G N AY Z DD

Recogni(3) R EH K AX G N IH SH AX N

The premise was that this stemmed language model would avoid
much of the confusion due to acoustic variations in suffixes of
words, but would aid in the correct recognition of the important
roots of the words. Table 3 shows the results of these
experiments. The word error rate of the stemmed language model
was higher than for the baseline language model. The WER
increased both if only stemmed words were counted, as well as
when all original words were compared. Furthermore the
information retrieval effectiveness (as measured by the inverse
average inverse rank metric) also showed a decrease.

,$,5/DQJXDJH

0RGHO

:RUG�(UURU

5DWH 8QILOWHUHG )LOWHUHG

%DVHOLQH ������ ����� ����

6WHPPHG ������ ������ ����

Table 3: Using a language model built from stemmed LM
training texts. This experiment was also done with the
“small” 103-query in-house development test set.

CONFIDENCE ANNOTATION

Since state-of-the-art speech recognition software does not
produce a perfect transcript of what was said, we would like to
obtain any extra information we can about the likelihood of
correctness of particular words. This is akin to the situation in
which a human annotator makes a guess at a word that was hard
to hear, and marks that this word may have been mis-heard.

An ideal automatic confidence annotator would label each word
produced by the speech recognizer with a label correct to indicate
that this is in fact the word that was spoken, and incorrect to
indicate that this word was not spoken. We will compare the
results of our annotation to this ideal, which we call Perfect
Annotation.

Features for Confidence Annotation

The confidence annotation we performed is based on work by Lin
Chase [2], though annotation has been explored by many others



including [3,4,5]. Typically confidence annotation is performed
by taking information available about individual occurrences of
words in the hypothesized text, from information produced within
the speech recognizer, or outside the recognizer. These features
are then automatically examined to find indicators of likely
correctness and incorrectness. The candidate features we
considered were:

• Acoustic Score. This is the score the speech recognizer
assigns the word based the probability that the acoustics
observed were generated by the hypothesis.

• Language Model Score. This is a score assigned by the
speech recognizer, based the probability that the word is to
occur given the previous two words.

• Duration. This is the duration of the word, and helps offset
the duration dependence of the acoustic score.

• N-best Homogeneity. The n-best list is the list of the best n
guesses at the words spoken in the document, sorted
according to a weighted combination of acoustic and
language model scores. A word appearing in our hypothesis
may appear in many or few of the competing hypotheses. N-
best list homogeneity is the proportion of hypotheses that the
word appears in. We set n to 200 for the confidence
annotation experiments.

Experimental Description - Confidence
Annotation

For each set of features, the experiment proceeds as follows:

• Label all words in training set as correct or incorrect by
comparing them to the words in the words in the reference
transcript

• Build a decision tree that finds sets of features that perform
well in distinguishing between correct and incorrect words
in speech recognition hypotheses.

• Use decision tree to test features of words in test set. Once a
word has been sorted into a leaf node, the proportion of
correct and incorrect words from the training set with these
features is used to calculate an approximate probability of
correctness

• Perform information retrieval by weighting each word
according to the probability that it is correct (the
confidence).

We conducted experiments by splitting the training data into two
sections, training our decision tree on one half, testing on the
other half, then reversing the roles.

Decision Tree Building

The decision tree building algorithm we use is C4.5 [7]. It
functions by taking all training data, and attempting to find rules
based on features which distinguish between classes. Each item
of training data is a word along with its associated features

(described above), and its class of correct or incorrect. Taking
each feature does this in turn, asking a question about that
feature, and using the answer to partition the data. A feature is
chosen if it has high information gain, i.e. if the resulting two
groups of data contain less of a mix of correct and incorrect. The
ideal split would create classes that contain exclusively correct or
exclusively incorrect examples.

Since such ideal splits are rare, the decision tree building halts
when no more information gain (reduction in entropy) can be
achieved. At this point, each leaf of the tree contains examples
which have all the same features for questions asked at each
partition, and which are mostly of one class. The proportion of
correct examples at this node is the probability of correctness that
will be assigned to any word with the same features.

When using the decision tree to classify a new word, we check
each of its features to find which leaf-node of the decision tree to
classify it into. At that point, it is classified as having the
probability of correctness corresponding to this leaf node.

Evaluating Confidence Annotation: Cross-
Entropy Reduction

The most common method of evaluating word confidence
annotation is cross-entropy reduction. Cross-entropy is a measure
of how well our model of the probability of word correctness
corresponds to Perfect Annotation (as defined above). If our
model annotates perfectly, its cross-entropy is 0. The worse the
annotation performs the higher the cross-entropy.

The most naive from of confidence annotation we can perform is
to tag each word with a probability of correctness equal to the
overall word-accuracy. Thus if we know that our recognizer
generally gets 80% of words correct, the baseline confidence
annotator assigns each word an 80% probability of correctness.
We then measure the quality of our annotation by measuring how
much better it performs than this baseline.
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Thus we attain a figure for cross-entropy for the default model of
classifying each word as correct with probability equal to the
word-accuracy, and score our improvements in modeling the
probability of correctness by how much they reduce cross-
entropy as a percentage of this baseline.

Information Retrieval Using Word
Confidence Weights

First we describe two orthogonal ways of using word confidence
weights in the relevance scheme described above:



• Expected Term Frequency (ETF): The ETF is an estimate
of how many times the term actually occurred given the
number of observations.  Assuming independent
observations, this is the product of the term frequency for
the word and the probability of the word being correct.

• Expected Inverse Document Frequency (EIDF): To
calculate EIDF, we first calculate the probability that this
word occurs somewhere in the document, for each
document:
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only take the product over terms for which the recognized word
was w. Summing this value over all documents and dividing by
the total number of documents gives us an approximate value of
the expected document frequency for this word

Oracle Experiments

Since the interaction between confidence annotation and
information retrieval may be complex, we also conducted an
experiment to see how we could make use of confidence scores in
the idealized case in which we know exactly which words are
correct, and which are incorrect. We removed words in two
different ways:

• Pre-filter: Before the hypothesis is filtered, all the words that
are not found in the reference are removed.

• Post-filter: After the hypothesis is filtered, all the words that
are not found in a filtered version of the reference are
removed

Table 4 shows that for both training and testing sets, the Post-
Filter Oracle annotation was able to significantly reduce the IR
error of the decoded transcripts. This indicates that a more
realistic experiment might be able to do this as well.

We performed an analysis of some of the differences between
documents in the stemmed oracle experiment, and reference
information retrieval experiments. We should expect the number
of query words in the correct document to decrease, since oracle
confidence annotation cannot correct for substitutions and
deletions, but will drop all incorrectly substituted and inserted
words. A cursory glance at documents and queries revealed that
some documents contain more query words as speech hypotheses
then the corresponding reference transcription. Our intuition here
is that speech recognition can occasionally correct for spelling
errors in the references, and so words that are incorrect with
respect to the reference transcription may be correct for the
purposes of information retrieval.

%DVHOLQH�3HUIRUPDQFH

2UDFOH

$QQRWDWLRQ

5HIHUHQFH

7UDQVFULSWV

'HFRGHG

7UDQVFULSWV

3UH�

)LOWHU

3RVW�

)LOWHU

7UDLQLQJ

6HW

����� ����� ����� �����

7HVWLQJ

6HW

����� ����� ����� �����

Table 4: Baseline and Oracle Annotation on TREC-6
Training and Testing Sets. Values are IAIR

Information Retrieval Experiments for
Confidence Annotations

In order to see how well cross-entropy reduction translates into
gains in information retrieval accuracy, we conducted a series of
experiments. Since we also hoped to find the best way of
incorporating weights into information retrieval we performed the
following information retrieval experiments:

• ETF: for this experiment, we used ETF, and regular IDF.

• EIDF: for this experiment, we used EIDF, and regular TF.

• ETF-EIDF: we use both ETF and EIDF
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Table 5: Confidence Annotation Performance on TREC-6
Training and Testing Sets. Values are IAIR.

The results of these experiments are found in
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Table 5. Although the IAIR was reduced in most cases, the upper
bound found in the Oracle Annotation was not attained.

6. USING N-BEST LISTS FOR
INFORMATION RETRIEVAL

Typically, speech recognition systems produce a transcription of
each spoken utterance in much the same way that a human
transcriptionist might. However, the transcription used is only the
most probable decoding of the acoustic signal, out of a large
number of hypotheses that are considered during the recognition
process. It is a relatively simple matter to obtain a list of these
different hypotheses, ranked in order of decreasing likelihood.



Using these additional hypotheses seems promising for
information retrieval, since it offers the hope of including terms
that would otherwise be missed by the speech recognizer in
documents, allowing them to match with query terms and
increase document recall. On the other hand, words incorrectly
identified in lower ranked recognition hypotheses may cause
spurious matches with query terms, decreasing retrieval
precision.

Experiments Using N-Best Lists

In the context of the TREC-6 SDR task, an initial attempt was
made to evaluate retrieval effectiveness using n-best hypotheses
lists generated from the speech recognition decoder lattice. N-
Best hypotheses were generated for the 1451 stories in the TREC-
6 SDR test data. Of these, decoding failed completely in four
cases, resulting in empty transcriptions. For the remaining 1447
stories, lists of the two hundred most likely hypotheses were
generated for each utterance. Table 6 shows an example of N-best
hypotheses.

Ideally, one would use hypothesis probabilities generated during
decoding to weight the terms during retrieval, but for this
preliminary experiment, the n hypotheses for each utterance were
simply concatenated together into one larger document. No
discounting of weights for less probable hypotheses was done.

1 1WK�PRVW�OLNHO\�GHFRGHU�K\SRWKHVLV

�
HATE FAIR ADEQ EDUC CHILD WITHSTAND CALM

�
HATE FAIR ADEQ EDUC CHILD WITHSTAND COMMON

�
HATE FAIR ADEQ EDUC CHILD WITHSTAND INTERCOM

�
HATE FAIR ADEQ EDUC CHILD WITHSTAND CALM

Table 6: The top four hypotheses for utterance three of story
j960531d.7, after stop word removal and stemming. Note that
the fourth hypothesis is identical to the first, and differed only
in inflected forms.

The effect on retrieval effectiveness of using the documents
generated from the n-best lists in the TREC-6 test set is illustrated
in Table 7. Note that for N set at 50, the performance on the
hypothesized transcripts is actually slightly lower than
performance on the reference transcripts (1.332) This may be
again due to effects of misspellings in the reference transcripts.
These results were obtained from the official NIST queries using
the full TREC-6 SDR corpus. The 49 queries include the
corrected transcription for the words “well-known”, “C.I.A.”,
“smoking?”, and “torched?”. Thus the baseline at 1 hypothesis is
slightly higher than the official number reported in Table 1.
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Table 7: IR Performance of N-Best hypotheses on the TREC-
6 test set. The 49 queries include the corrected transcription

for the words “well-known”, “C.I.A.”, “smoking?”, and
“torched?”. Thus the baseline at 1 hypothesis is slightly
higher than the official number reported in Table 1.

While it is encouraging that an improvement in retrieval can be
obtained at all by this method, it is clear that further work will be
required if the promise of this idea is to be realized. In particular,
the increasingly harmful effect of adding large numbers of less
probable hypotheses to the documents suggests that discounting
each hypothesized word by its recognition score may improve
performance even more.

7. SCALING COLLECTION SIZE

Many of our experiments, including some of the ones reported
here, seem to suffer from two problems. The effect size of our
experimental variables seems to be fairly small, and the
difference between the reference text retrieval and the speech
recognition transcript retrieval is only a few percent of the inverse
average inverse rank. If this relationship holds even as we scale to
larger, more realistic, and more useful collections, then we can
consider the problem of spoken document retrieval practically
solved to within a few percent of perfect text retrieval
effectiveness.

To test this hypothesis using the TREC-6 training set, we
increased the number of text documents in the corpus up to
14,000 and measured the inverse average inverse rank for the
same retrieval queries. However, instead of actually performing
speech recognition on the added documents, artificially degraded
texts were used. In this case, the degradation method attempted to
only model word errors through deletion of term words. Although
a primitive model of speech recognition errors this may represent
an upper performance bound.

Figure 1 shows the relationship between the inverse average
inverse rank information retrieval performance and the size of the
document collection. As more documents are added to the
collection, the gap between the reference (perfect text) retrieval
and the speech recognition based retrieval grows. At collections
larger than 10,000 documents the gap starts to widen
significantly. We can expect to experience larger discrepancies
between speech transcribed and perfectly transcribed documents,
which may make spoken document recognition unusable for
collections numbering in the 100,000 or larger.

8. SUMMARY

There are several conclusions we can draw based on our
experiments:

• First of all, we have found that even large reductions in
speech recognition word error rate result only in small
information retrieval improvements. On the converse side,
the quality of information retrieval is a lot higher than the
speech recognition word error rate figures would indicate.
Despite fairly high word error rates, information retrieval
performance was only slightly degraded for speech
recognizer transcribed documents.

• Stemmed language modeling did not help speech
recognition or information retrieval.



• A 51,000 vocabulary covered the range of words used in the
queries quite well. Only one query word was truly outside of
this vocabulary.

• We could expect better performance on the reference texts if
better IR weighting schemes and pre-processing functions
were used. These improvements would probably also result
in small gains in the speech corpus, although we have done
no studies , including Should use better IR functions (not our
focus)

• Confidence Measures provide no benefit. Even an oracle
confidence measure, which can reliably single out the
correctly recognized words and discard all the other words
provides only a small increase in retrieval effectiveness (as
measured in IAIR). This points to the conclusion that deleted
(missing) words are most critical, while inserted words do
not affect the retrieval in the same proportion.

• Since deleted (missing) words are critical to the retrieval
effectiveness, one can try to reduce this by adding probable
words from the speech recognizer hypothesis N-Best list.
Using the N-Best list to augment the speech recognition
output with likely words shows great promise. Our
experiments indicate that this approach might drastically
reduce the difference between perfect text transcripts and
speech recognizer generated transcripts.

In general, most of our findings are very preliminary. While we
believe we may have uncovered trends, there is too little data for
conclusive experiments. As a result, we did not conduct
significance tests to measure the practical effects of the observed
trends since the TREC-6 SDR track provided too little data for
definitive experiments. Furthermore, the difference between the
speech recognizer generated transcripts and the perfect text
transcripts was too small in this corpus. However, the
experiments we have done on increasing the scale of these
document collections by orders of magnitude leave a worrisome
fear that the initially promising results for SDR will not hold up
in larger data sets.
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Figure 1: Effect of collection size on IR performance of the
TREC-6 training set with reference and artificially degraded
documents. The X Axis is the number of documents used in
the analysis, and the Y Axis is the IAIR.
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